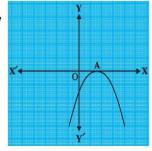
$(c) \ge 3$

(d) cannot be fixed


1. The degree of the polynomial whose graph is given below:

(b) 2

(a) 1

2.	If the sum of the (a) 3	zeroes of the poly $(b) -3$			hen the value of k is:			
3.		roes of the polyno $(b) -3, -4$			if tis one zeroes is $x = 1$ are: (d) 3, 4			
4.					pes are –3 and 2 is: none of the these.			
5.	The third zero of (a) 7	the polynomial, if (b) -7 (hose zeroes are –3 and 2 is:			
6.	15 15	are two zeroes o	f the polynor	$mial 3x^4 + 6x^3$	$-2x^2 - 10x - 5$, then its other two			
	zeroes are: $(a) -1, -1$	(b) 1, −1	(c) 1,	1 (d) 3	, –3			
7.	If $a - b$, a and $a + a = a + b$	b are zeroes of the bare $-1 + \sqrt{2}$	he polynomia (c) –	$1 \cdot x^3 - 3x^2 + x$ $1 - \sqrt{2}$	+ 1 the value of (a + b) is (d) 3			
8.	A real numbers a (a) $f(a) = -1$	is called a zero of (b) $f(a) = 1$	f the polynon (c) f(a		(d) $f(a) = -2$			
9.	Which of the follo	owing is a polynor	mial:					
	(a) $x^2 + \frac{1}{x}$	(b) $2x^2 - 3\sqrt{x} +$	1 (c) x^2	$+x^{-2}+7$	(d) $3x^2 - 3x + 1$			
10.	10. The product and sum of zeroes of the quadratic polynomial $ax^2 + bx + c$ respectively are:							
	(a) $\frac{b}{a}$, $\frac{c}{a}$	(b) $\frac{c}{a}, \frac{b}{a}$	(c) $\frac{c}{b}$,1	(d) $\frac{c}{a}, \frac{-b}{a}$			
11. The quadratic polynomial, sum and product of whose zeroes are 1 and -12 respectively is (a) $x^2 - x - 12$ (b) $x^2 + x - 12$ (c) $x^2 - 12x + 1$ (d) $x^2 - 12x - 1$.								
12. If the product of two of the zeroes of the polynomial $2x^3 - 9x^2 + 13x - 6$ is 2, the third zero of the polynomial is:								
	(a) -1	(b) -2 (c) $\frac{3}{2}$	(d) $-\frac{3}{2}$				

- The value of k for which (-4) is a zero of the polynomial $x^2 x (2k + 2)$ is
 - (a) 3
- (b) 9
- (c) 6
- (d) -1
- If the zeroes of the quadratic polynomial $ax^2 + bx + c$, $c \neq 0$ are equal,
 - (a) c and a have opposite sign
- (b) c and b have opposite sign
- (c) c and a have the same sign
- (d) c and b have the same sign

- The number of zeroes of the polynomial from the graph is
 - (a) 0
- (b) 1
- (c) 2
- If one of the zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is
 - (a) 10
- (b) -10
- (c) 5
- (d) -5
- A quadratic polynomial whose zeroes are –3 and 4 is

(a)
$$x^2 - x + 12$$

(a)
$$x^2 - x + 12$$
 (b) $x^2 + x + 12$ (c) $2x^2 + 2x - 24$.

- (d) none of the above.
- The relationship between the zeroes and coefficients of the quadratic polynomial $ax^2 + bx + c$

is (a)
$$\alpha + \beta = \frac{c}{a}$$

(b)
$$\alpha + \beta = \frac{-b}{a}$$
 (c) $\alpha + \beta = \frac{-c}{a}$

(c)
$$\alpha + \beta = \frac{-\alpha}{a}$$

(d) $\alpha + \beta = \frac{b}{a}$

- The zeroes of the polynomial $x^2 + 7x + 10$ are
 - (a) 2 and 5
- (b) -2 and 5 (c) -2 and -5 (d) 2 and -5
- The relationship between the zeroes and coefficients of the quadratic polynomial $ax^2 + bx + c$

is (a)
$$\alpha . \beta = \frac{c}{a}$$

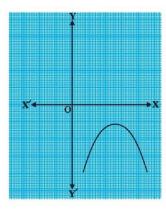
(b)
$$\alpha . \beta = \frac{-b}{a}$$

(c)
$$\alpha . \beta = \frac{-c}{a}$$
 (d) $\alpha . \beta = \frac{b}{a}$

(d)
$$\alpha . \beta = \frac{b}{a}$$

- The zeroes of the polynomial $x^2 3$ are
 - (a) 2 and 5

- (b) -2 and 5 (c) -2 and -5 (d) none of the above
- 10. The number of zeroes of the polynomial from the graph is
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- 11. A quadratic polynomial whose sum and product of zeroes are -3 and 2 is


(a)
$$x^2 - 3x + 2$$

(a)
$$x^2 - 3x + 2$$
 (b) $x^2 + 3x + 2$ (c) $x^2 + 2x - 3$. (d) $x^2 + 2x + 3$.

(d)
$$x^2 + 2x + 3$$
.

- 12. The zeroes of the quadratic polynomial $x^2 + kx + k$, $k \neq 0$,
 - (a) cannot both be positive
- (b) cannot both be negative
 - (c) are always unequal

(d) are always equal

1.	If α, β are the zeroes of the polynomials $f(x) = x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$								
	(a) 0			(d) none of these					
2.	If one of the zero of the polynomial $f(x) = (k^2 + 4)x^2 + 13x + 4k$ is reciprocal of the other then $k =$								
	(a) 2		(c) -1						
3.	If α, β are the zeroes of the polynomials $f(x) = 4x^2 + 3x + 7$, then $\frac{1}{\alpha} + \frac{1}{\beta}$								
	3	(b) $\frac{-7}{3}$,	1					
4.	If the sum of (a) 2			$f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then value of k is $f(d) - 4$					
5.	of $y = p(x)$ int	ersects the		y the x -coordinates of the points, where the graph					
				(d) none of the above					
6.	If α , β are th (a) $c - 1$			$f(x) = x^2 - p(x+1) - c$, then $f(\alpha + 1)(\beta + 1) = 0$ (d) $f(\alpha + 1)(\alpha + 1) = 0$					
7.	A quadratic p (a) 0	olynomial can l (b) 1		zeroes (d) 3					
8.	A cubic polyn (a) 0	omial can have (b) 1	at most (c) 2	zeroes. (d) 3					
9.		e zeroes of $p(x)$ -1, 2 (c) -2		, 3					
10. Which are the zeroes of $p(x) = (x - 1)(x - 2)$: (a) 1, -2 (b) -1, 2 (c) 1, 2 (d) -1, -2									
11.	Which of the	following is a p	olynomial?						
	$(a)x^2 - 5x + 3$								
	$(b)\sqrt{x} + \frac{1}{\sqrt{x}}$								
	$(c)x^{3/2} - x + x$	c ^{1/2}							
0.202	$(d)x^{1/2} + x + 10$								
12.	12. Which of the following is not a polynomial? $(a)\sqrt{3}x^2 - 2\sqrt{3}x + 3$								
	$(b)\frac{3}{2}x^3 - 5x^2 - \frac{1}{\sqrt{2}}x - 1$								
	$(c)x + \frac{1}{x}$								
	$(d)5x^2 - 3x + \sqrt{2}$								

1.	If α, β are the (a) 5			$(x) = x^2 + 5x + 8$, the (d) none of these	en $\alpha + \beta$			
2.	If α, β are the (a) 0			$(x) = x^2 + 5x + 8$, the (d) none of these	en $\alpha.eta$			
3.	On dividing $x^3 + 3x^2 + 3x + 1$ by $x + \pi$ we get remainder: $(a) - \pi^3 + 3\pi^2 - 3\pi + 1$ $(b)\pi^3 - 3\pi^2 + 3\pi + 1$ $(c) - \pi^3 - 3\pi^2 - 3\pi - 1$ $(d) - \pi^3 + 3\pi^2 - 3\pi - 1$							
4.	The zero of p((a) $\frac{4}{9}$ (b) $\frac{9}{4}$		(d) $\frac{-9}{4}$)				
5.	On dividing x^3 (a) $\frac{8}{27}$		by 5 + 2x we g (c) $\frac{-27}{8}$					
6.	A quadratic po (a) $x^2 - 3x + 1$	olynomial whose 2 (b) x ²	se sum and proc $+3x + 12$	duct of zeroes are – (c) $2x^2 + x - 24$.	3 and 4 is (d) none of the above.			
7.	A quadratic potential $(a) 10x^2 - x - $	olynomial whos	se zeroes are $\frac{3}{5}$ $x^2 + x - 3$	and $\frac{-1}{2}$ is (c) $10x^2 - x + 3$	(d) none of the above.			
8.	A quadratic polynomial whose sum and product of zeroes are 0 and 5 is (a) $x^2 - 5$ (b) $x^2 + 5$ (c) $x^2 + x - 5$. (d) none of the above.							
9.	A quadratic polynomial whose zeroes are 1 and -3 is (a) $x^2 - 2x - 3$ (b) $x^2 + 2x - 3$ (c) $x^2 - 2x + 3$ (d) none of the above.							
10. A quadratic polynomial whose sum and product of zeroes are -5 and 6 is (a) $x^2 - 5x - 6$ (b) $x^2 + 5x - 6$ (c) $x^2 + 5x + 6$ (d) none of the above.								
11. Which are the zeroes of $p(x) = x^2 + 3x - 10$: (a) 5, -2 (b) -5, 2 (c) -5, -2 (d) none of these								
12.	12. Which are the zeroes of $p(x) = 6x^2 - 7x - 3$: (a) 5, -2 (b) -5, 2 (c) -5, -2 (d) none of these							
13.	Which are the (a) 4, -3 (b)		$= x^2 + 7x + 12$ 4, -3 (d) no					